Table de la loi de ou de Karl Pearson

Valeur de pour laquelle la probabilité d'une valeur inférieure à suivant le nombre n de degrés de liberté est = F ( ).
(n : 1, 11, 21, 40).

 n\  0,005 0,010 0,025 0,050 0,100 0,250 0,500 0,750 0,900 0,950 0,975 0,990 0,995

1
0,0000 0,0002 0,0010 0,0039 0,0158 0,102 0,455 1,32 2,71 3,84 5,02 6,63 7,88

2
0,0100 0,0201 0,0506 0,103 0,211 0,575 1,39 2,77 4,61 5,99 7,38 9,21 10,6

3
0,0717 0,115 0,216 0,352 0,584 1,21 2,37 4,11 6,25 7,81 9,35 11,3 12,8

4
 0,207 0,297 0,484 0,711 1,06 1,92 3,36 5,39 7,78 9,49 11,1 13,3 14,9

5
0,412 0,554 0,831 1,15 1,61 2,67 4,35 6,63 9,24 11,1 12,8 15,1 16,7

6
0,676 0,872 1,24 1,64 2,20 3,45 5,35 7,84 10,6 12,6 14,4 16,8 18,5

7
0,989 1,24 1,69 2,17 2,83 4,25 6,35 9,04 12,0 14,1 16,0 18,5 20,3

8
1,34 1,65 2,18 2,73 3,49 5,07 7,34 10,2 13,4 15,5  17,5 20,1 22,0

9
1,73 2,09 2,70 3,33 4,17 5,90 8,34 11,4 14,7 16,9 19,0 21,7 23,6

10
2,16 2,56 3,25 3,94 4,87 6,74 9,34 12,5 16,0 18,3 20,5 23,2 25,2

 11
2,60 3,05 3,82 4,57 5,58 7,58 10,3 13,7 17,3 19,7 21,9 24,7 26,8

 12
3,07 3,57 4,40 5,23 6,30 8,44 11,3 14,8 18,5 21,0 23,3 26,2 28,3

 13
 3,57 4,11 5,01 5,89 7,04 9,30 12,3 16,0 19,8 22,4 24,7 27,7 29,8

 14
4,07 4,66 5,63 6,57 7,79 10,2 13,3 17,1 21,1 23,7 26,1 29,1 31,3

 15
4,60 5,23 6,26 7,26 8,55 11,0 14,3 18,2 22,3 25,0 27,5 30,6 32,8

 16
5,14 5,81 6,91 7,96 9,31 11,9 15,3 19,4 23,5 26,3 28,8 32,0 34,3

 17
5,70 6,41 7,56 8,67 10,1 12,8 16,3 20,5 24,8 27,6 32,0 33,4 35,7

 18
6,26 7,01 8,23 9,39 10,9 13,7 17,3 21,6 26,0 28,9 31,5 34,8 37,2

 19
6,84 7,63 8,91 10,1 11,7 14,6 18,3 22,7 27,2 30,1 32,9 36,2 38,6

 20
7,43 8,26 9,56 10,9 12,4 15,5 19,3 23,8 28,4 31,4 34,2 37,6 40,0

 21
8,03 8,90 10,3 11,6 13,2 16,3 20,3 24,9 29,6 32,7 35,5 38,9 41,4

 22
8,64 9,54 11,0 12,3 14,0 17,2 21,3 26,0 30,8 33,9 36,8 40,3 42,8

 23
9,26 10,2 11,7 13,1 14,8 18,1 22,3 27,1 32,0 35,2 38,1 41,6 44,2

 24
9,89 10,9 12,4 13,8 15,7 19,0 23,3 28,2 33,2 36,4 39,4 43,0 45,6

 25
10,5 11,5 13,1 14,6 16,5 19,9 24,3 29,3 34,4 37,7 40,6 44,3 46,9

 26
11,2 12,2 13,8 15,4 17,3 20,8 25,3 30,1 35,6 38,9 41,9 45,6 48,3

 27
11,8 12,9 14,6 16,2 18,1 21,7 26,3 31,5 36,7 40,1 43,2 47,0 49,6

 28
12,5 13,6 15,3 16,9 18,9 22,7 27,3 32,6 37,9 41,3 44,5 48,3 51,0

 29
13,1 14,3 16,0 17,7 19,8 23,6 28,3 33,7 39,1 42,6 45,7 49,6 52,3

 30
13,8 15,0 16,8 18,5 20,6 24,5 29,3 34,8 40,3 43,8 47,0 50,9 53,7

 40
 20,7 22,2 24,4 26,5 29,1 33,7 39,3 45,6 51,8 55,8 59,3 63,7 66,8

 50
28,0 29,7 32,4 34,8 37,7 42,9 49,3 56,3 63,2 67,5 71,4 76,2 79,5

 60
35,5 37,5 40,5 43,2 46,5 52,3 59,3 67,0 74,4 79,1 83,3 88,4 92,0

 70
43,3 45,4 48,8 51,7 55,3 61,7 69,3 77,6 85,5 90,5 95,0 100,4 104,2

 80
51,2 53,5 57,2 60,4 64,3 71,1 79,3 88,1 96,6 101,9 106,6 112,4 116,3

 90
59,2 61,8 65,6 69,1 73,3 80,6 89,3 98,6 107,6 113,1 118,1 124,1 128,3

 100
67,3 70,1 74,2 77,9 82,4 90,1 99,3 109,1 118,5 124,3 129,6 135,8 140,2

Pour les grandes valeurs de n, la loi de probabilité de tend vers une loi normale de moyenne n et de variance 2 n.
Si n est suffisamment grand, la variable aléatoire suit, à peu près, une loi normale centrée réduite.